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Abstract 

The Finite Element Method (FEM) is a very effective technique that is widely used for solving 

problems in structural mechanics, fluid dynamics, heat transfer and other areas of engineering and 

science by solving Partial Differential Equations. This paper describes the formulation of the Finite 

Element Method along with the detailed steps of formulation. We have also shown the Step-by-Step 

Derivation of Iso-parametric Coordinate Transformation for Higher- order Triangular Elements, 

discussing their advantages and applications. A method is also shown to determine the points along 

the curved boundary and the interior of a triangle. 
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Introduction 

Finite Element Formulation refers to the mathematical and computational approach used to solve 

partial differential equations (PDEs) by dividing a complex domain into smaller, simpler pieces, 

called finite elements. The finite element method (FEM) is a powerful numerical technique widely 

used for solving problems in structural mechanics, fluid dynamics, heat transfer, and other areas of 

engineering and science. 

Steps in Finite Element Formulation 

1. Discretization of the Domain (Meshing): The first step is to discretize the entire problem 

domain (geometry) into a collection of sub-domains known as "elements." These elements can take 

various shapes, such as triangles (2D), tetrahedrons (3D) or quadrilaterals (2D).The points at the 

corners or within the elements are called "nodes." 

2. Selection of Element Type and Shape Functions: The next step is to select appropriate 

interpolation functions (also called shape functions or basis functions) to approximate the solution 

over each element. These shape functions are typically polynomials (e.g., linear, quadratic) defined in 

terms of the nodal values. 

3. Derivation of Element Equations: Governing equations (typically PDEs like the heat equation, 

wave equation, etc.) are rewritten in a form suitable for FEM, often using a weak formulation such as 

the Galerkin Method or Variational Methods.The PDEs are then transformed into a system of 

algebraic equations for each element. These equations relate the nodal values of the unknown solution 

to the shape functions. 

4. Assembly of Global System of Equations: The local element equations are combined to form a 

global system of equations that describes the entire problem domain. This involves assembling a 

stiffness matrix (or other relevant system matrices), load vectors, and boundary conditions. 

5. Application of Boundary Conditions: Boundary conditions (such as fixed supports, prescribed 

displacements, or forces) are applied to the global system of equations. 

6. Solving the System of Equations: The assembled system of linear or nonlinear equations is 
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solved using numerical methods, such as Gaussian Elimination, Iterative Solvers (e.g., Conjugate 

Gradient), or Direct Solvers (e.g., LU Decomposition). 

7. Post-processing: The solution at each node is obtained and interpolated over the elements 

using the shape functions. Results like stresses, strains, velocities, or heat fluxes can be derived from 

the nodal solutions for further analysis and visualization. 

 

Advantages of FEM 

• Flexibility: It can handle complex geometries, boundary conditions, and material properties. 

• General applicability: FEM can be used to solve a wide range of problems, from structural 

analysis to fluid flow. 

• Accuracy: By refining the mesh (increasing the number of elements), FEM can achieve high 

accuracy in solutions. 

 

Applications 

• Structural Analysis: Used to determine the deformation and stresses in materials and 

structures. 

• Fluid Dynamics (CFD): Used to simulate the flow of fluids and solve problems involving 

fluid-structure interaction. 

• Heat Transfer: Used for simulating heat conduction, convection, and radiation in various 

media. 

To find the equations for point transformation of higher order triangular elements using iso- 

parametric coordinate transformation. The iso-parametric coordinate transformation is commonly 

used in Finite Element Methods (FEM) to map elements from their natural (or reference) coordinate 

system to the global (or real-world) coordinate system. For higher-order triangular elements, the shape 

functions are more complex than for linear elements, but the principle remains the same. 

In this case, we will discuss the transformation of higher-order triangular elements (e.g., quadratic or 

cubic elements) using iso-parametric transformation. The natural coordinate system for triangular 

elements uses area coordinates (barycentric coordinates), typically denoted as (ξ,η). 

Step-by-Step Derivation of Iso-parametric Coordinate Transformation for Higher-order 

Triangular Elements 

1. Natural Coordinates for a Triangular Element: A triangular element in its natural coordinate 

system is usually defined in terms of barycentric (area) coordinates, denoted as (ξ,η). These 

coordinates are constrained as: 

0≤ξ≤1, 0≤η≤1, ξ+η≤1 

For higher-order elements, we need additional internal nodes. 

2. Global Coordinates of the Triangular Element: The physical (global) coordinates of the 

triangular element are denoted as (x,y). The goal is to establish a transformation between the natural 

coordinates (ξ,η) and the global coordinates (x,y). 

3. Quadratic Shape Functions (for 6-node Triangular Element): For a higher-order (quadratic) 

triangular element with 6 nodes, the global coordinates (x,y) can be expressed as a function of the 

natural coordinates (ξ,η) using iso-parametric shape functions.The shape functions for a 6-node 

triangular element in natural coordinates (ξ,η) are 

N1=1−3ξ−3η+2ξ2+4ξ+2η2N2=ξ(2ξ−1) 

N3=η(2η−1)NN4=4ξ(1−ξ−η) 

N5=4ξηN6=4η(1-η) 

These shape functions are quadratic polynomials in (ξ,η) and are designed to interpolate values at the 

6 nodes of the quadratic triangular element. 

4. Iso-parametric Coordinate Transformation: The coordinates (x,y)in the global coordinate 

system are related to the natural coordinates (ξ,η) using the shape functions Ni and the nodal 

coordinates (xi,yi) as: 

x(ξ,η)=∑i=1∑6Ni(ξ,η)yi 

where xi and yi are the global coordinates of the 6 nodes of the triangular element, and Ni(ξ,η) are the 

shape functions corresponding to each node. 
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5. Jacobian Matrix for Coordinate Transformation: To transform between natural and global 

coordinates, we need to compute the Jacobian matrix, which relates the differential elements in 

natural and global coordinates. The Jacobian matrix J is defined as 

J =   
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These derivatives give the entries of the Jacobian matrix. 

Element Stiffness Matrix: The Jacobian is used to transform the integration over the natural 

coordinates to the global coordinates. For higher-order triangular elements, the element stiffness 

matrix is computed using Gaussian quadrature over the natural coordinates. The transformed stiffness 

matrix involves integrating the strain-displacement matrix B and material property matrix D over the 

element. 

The element stiffness matrix Ke is given by 

Ke=ΩBTDBdΩ 

where B is the strain-displacement matrix (transformed using the Jacobian), D is the material property 

matrix, and Ω is the area of the triangular element in global coordinates. 

The iso-parametric coordinate transformation is commonly used in Finite Element Methods (FEM) to 

map elements from their natural (or reference) coordinate system to the global (or real- world) 

coordinate system. For higher-order triangular elements, the shape functions are more complex than 

for linear elements, but the principle remains the same.In this case, we will discuss the transformation 

of higher-order triangular elements (e.g., quadratic or cubic elements) using iso-parametric 

transformation. The natural coordinate system for triangular elements uses area coordinates 

(barycentric coordinates), typically denoted as (ξ,η). 

To determine the points along the Curved Boundary and the Interior of a Triangle 

To determine points along the curved boundary and the interior of a triangular element in the context 

of finite element analysis (FEA), particularly when dealing with higher-order triangular elements, the 

following process can be used. The process assumes we have a curved boundary formed using a 

higher-order representation, such as with quadratic or cubic shape functions. 

For this, we will 

• Use Iso-parametric Coordinates for Point Representation. 

• Define Shape Functions for Higher-order Triangular Elements. 

• Map Points from the Natural Coordinate System to the Global Coordinate System. 

• Evaluate Points Along the Curved Boundary and Inside the Element. 

Steps to determine points along the Curved Boundary and Interior 

1. Natural Coordinates (Barycentric Coordinates): The triangular element can be described in 

a local (natural) coordinate system, using barycentric coordinates (ξ,η) for parametric representation. 

These coordinates range from 0 to 1 and are constrained by ξ+η≤1, meaning the element occupies a 

triangular region in (ξ,η)space. 

For example:  

Vertices of the triangle are located at: 

Vertex 1 at (ξ,η)=(0,0) 

Vertex 2 at (ξ,η)=(1,0) 

Vertex 3 at (ξ,η)=(0,1) 

2. Higher-Order Shape Functions: For a quadratic triangular element with 6 nodes (3 corner 

nodes and 3 mid-side nodes), the global coordinates (x,y) of any point within the element can be 

expressed using shape functions Ni(ξ,η) and the nodal coordinates (xi,yi). The shape functions for a 

quadratic triangular element are 

N1=1−3ξ−3η+2ξ2+4ξη+2η2 
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N2=ξ(2ξ−1) 

N3=η(2η−1) 

N4=4ξ(1−ξ−η) 

N5=4ξη  

N6=4η(1−ξ−η) 

For a cubic triangular element (with more internal nodes), the shape functions would be of higher 

degree, but the process is similar. 

3. Global Coordinate Mapping: The global coordinates (x,y) of a point inside the triangle (or 

on the boundary) are obtained using the following transformation 

𝑥(𝜉, 𝜂) =𝑛𝑁𝑖(𝜉, 𝜂)𝑥𝑖 

𝑦(𝜉, 𝜂) =𝑛𝑁𝑖(𝜉, 𝜂)𝑦𝑖 

Here, n is the number of nodes for the element (e.g., n=6n =6 for a quadratic triangular element), and 

(xi,yi) are the global coordinates of the corresponding nodes. 

• Interior points can be calculated by selecting values of (ξ,η) within the triangular domain. 

• Boundary points are determined by selecting specific values of ξ and η corresponding to the 

edges (where one of the coordinates is zero or one). 

For example:  

• The edge between Node 1 and Node 2 corresponds to η=0and varying ξ between 0 and 1. 

• The edge between Node 1 and Node 3 corresponds to ξ=0 and varying η between 0 and 1. 

• The edge between Node 2 and Node 3 corresponds to ξ+η=1, with ξ,η≥0. 

4. Points along the Curved Boundary: For curved boundaries, such as those represented by 

quadratic shape functions along an edge, the mid-side nodes introduce curvature. To find points along 

this curve. Parameterize the boundary edge using the natural coordinates. For example, on the edge 

between Node 1 and Node 2 

η=0,ξ∈[0,1] 

Use the shape functions Ni(ξ,η) for the corresponding edge nodes (including the mid-side node) to 

determine the global coordinates (x,y) along the curve 

x(ξ)=N1(ξ,0)x1+N2(ξ,0)x2+N4(ξ,0)x4 

y(ξ)=N1(ξ,0)y1+N2(ξ,0)y2+N4(ξ,0)y4 

Similarly, we can evaluate the curved boundary for other edges. 

5. Points inside the Triangular Element: To compute points inside the element, select various 

pairs of (ξ,η) values such that ξ+η≤1 

For each selected (ξ,η) pair, use the global mapping equations. 

           x(ξ,η)=∑i=∑nNi(ξ,η)xiy(ξ,η)=∑i=Ni(ξ,η)yi 

This will give us the coordinates of points within the triangle. To generate a grid of points inside the 

element, we can systematically vary ξ and η values, ensuring that ξ+η≤1. 

Example: Quadratic Triangle with Curved Edges 

Consider a quadratic triangle positioned as follows: 

• Node1: (x1, y1) 

• Node2: (x2, y2) 

• Node3: (x3, y3) 

 • Mid-side Node 4(on edge between Node1 and 2): (x4, y4) 

• Mid-side Node 5(on edge between Node2 and 3): (x5, y5) 

• Mid-side Node 6(on edge between Node1 and 3): (x6, y6) 

1. Boundary Points: Along the boundary between Node1and Node2  

x(ξ)=N1(ξ,0)x1+N2(ξ,0)x2+N4(ξ,0)x4 

y(ξ)=N1(ξ,0)y1+N2(ξ,0)y2+N4(ξ,0)y4 

Similar equations apply for the other edges. 

2. Interior Points: Select values of ξ and η such that ξ+η≤1, and apply the shape functions to 

compute the interior points. 

Finding a Point along a Curved Body: In FEM, curves are often described parametrically or using 

finite elements to approximate the curve. To find a point on a curved body, we can use either 

parametric equations or the FEM approach for curves. 

Parametric Curves: A curve in 2D or 3D can be described by parametric equations 
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 r(t)=⟨x’(t), y’(t), z’(t)⟩ 
where t is the parameter that varies along the curve. 

Finding a Point for a given Arc Length 

To find a point at specific arc lengths along the curve: 

1. Find the Differential of the Curve: Calculate the derivative of the curve with respect to the 

parameter t: 

r′(t)=⟨x′(t),y′(t),z′(t)⟩ 
2. Calculate the Arc Length: The arc length from 𝑡𝑜 to t is given by: 

s=∫𝑡𝑟′(𝑡)𝑑𝑡=∫𝑡 ∫𝑡0𝑡(x′(t)) 

3. Solve for the Parameter t: For a given arc length, solve the arc length equation to find the 

parameter t. 

4. Find the Point: Substitute the value of t into the parametric equations to find the point along 

the curve. 

Example: Arc Length along a 2D Curve 

Consider the curve r(t)=⟨t,t2⟩, a parabola. 

1. Derivative of the Curve: r′(t)=⟨1,2t⟩ 
2. Arc-Length: The arc length from t0=0 to t is: 

s=∫t1+(2t)2dt 

This is a standard integral that can be solved to give the arc length. 

3. Solve for t: For a given arc length, solve this equation for t. 

4. Find the Point: Once t is determined, the corresponding point on the curve is r(t)=⟨t,t2⟩. 
 

Conclusion 

These methods describe how to solve higher-order differential equations using FEM and how to find a 

point along a curved body using parametric descriptions and arc length. The paper also shows the 

method to determine the points along the Curved Boundary and the Interior of a Triangle by taking 

various examples. Additionally, we also find a step-by-Step Derivation of Iso-parametric Coordinates. 
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